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Abstract Classification technologies have become increaginigal to informa-
tion analysis systems that rely upon collected ttataake predictions or informed
decisions. Many approaches have been developédnbuwf the most successful
in recent times is the Random Forest. The Discridmi Random Forest is a novel
extension of the Random Forest classification nahagy that leverages Linear
Discriminant Analysis to perform multivariate nosiglitting during tree construc-
tion. An extended study of the Discriminant RandBarest is presented which
shows that its individual classifiers are stronged more diverse than their Ran-
dom Forest counterparts, yielding statisticallyngfigant reductions in classifica-
tion error of up to 79.5%. Moreover, empiricalttesuggest that this approach is
computationally less costly with respect to bottnmoey and efficiency. Further
enhancements of the methodology are investigatat akhibit significant per-

formance improvements and greater stability atfaiae alarm rates.

1 Introduction

One of the greatest emerging assets of the modehmaélogical community is-
formation, as the computer age has enhanced our abilitpltect, organize, and

analyze large quantities of data. Many practiggiliaations rely upon systems



that are designed to assimilate this informatiombéing complex analysis and in-
ference. In particular, classification technolegieave become increasingly vital
to systems that learn patterns of behavior frortect#d data to support prediction
and informed decision-making. Applications that défitrgreatly from these meth-
odologies span a broad range of fields, includiredical diagnostics, network
analysis (e.g., social, communication, transpantatand computer networks), im-
age analysis, natural language processing (e.gyndent classification), speech
recognition, and numerous others.

Many effective approaches to classification havenbadeveloped, but one of the
most successful in recent times is the Random Eofidee Random Forest (RF) is
a nonparametric ensemble classification methodollgyse class predictions are
based upon the aggregation of multiple decisioa tiassifiers. In this paper, we
present an in-depth study of the Discriminant Ramdfmrest (DRF), a novel clas-
sifier that extends the conventional RF via a maliate node splitting technique
based upon a linear discriminant function.

Application of the DRF to various two-class sigdakection tasks has demon-
strated that this approach achieves reductionkiasification error of up to 79.5%
relative to the RF. Empirical tests suggest thet performance improvement can
be largely attributed to the enhanced strengthdiwetsity of its base tree classifi-
ers, which, as demonstrated in [3], lead to lowauruls on the generalization er-
ror of ensemble classifiers. Moreover, experimaniggest that the DRF is com-
putationally less costly with respect to both meyramd efficiency.

This paper is organized as follows: Section 2 sanwas the motivation and
theory behind the Random Forest methodology. Wseut the Discriminant
Random Forest approach in detail in Section 3, @mtrast the performance of
the RF and DRF methods for two signal detectiorliegjions in Section 4. This
study incorporates an assessment of statisticaifisignce of the observed differ-
ences in algorithm performance. Finally, our cosidos are summarized in Sec-

tion 5.



2 Random Forests

The random decision forest concept was first preddsy Tin Kam Ho of Bell
Labs in 1995 [12, 13]. This method was later edéshand formalized by Leo
Breiman, who coined the more general tédRamdom Forest to describe the ap-
proach [3].

In [3], Breiman demonstrated that RFs are not didyly effective classifiers,
but they readily address numerous issues that érgtyjucomplicate and impact
the effectiveness of other classification methodias leveraged across diverse
application domains. In particular, the RF regair® simplifying assumptions
regarding distributional models of the data andreprocesses. Moreover, it eas-
ily accommodates different types of data and illyigobust to overtraining with
respect to forest size. As the number of tredbénRF increases, the generaliza-
tion error, PE”, has been shown in [3] to converge and is bouadedllows,

pE’ < P1=%) &)

<

s=1-2[PE, (2)

where p denotes the mean correlation of tree predictisngpresents the strength

*

tree

of the trees, andPE, . is the expected generalization error for an irttiial tree
classifier. From (Eqg. 1), it is immediately apparéhat the bound on generaliza-
tion error decreases as the trees become strongeless correlated. To reduce
the mean correlationg, among trees, Breiman proposed a bagging appidach
2], in which each tree is trained on a bootstrapgsdple of the original training
data, typically referred to as its bagged trainseg [5, 9]. Though each bagged
training set contains the same number of samplélseasriginal training data, its

samples are randomly selected with replacementaaadrepresentative of ap-
proximately% of the original data. The remaining samples @megally referred

to as theout-of-bag (OOB) data and are frequently used to evaluatesitieation

performance.



At each node in a classification tree features are randomly selected from the
available feature set, and the single feature pioduthe “best” split (according to
some predetermined criterion, e.g., Gini impurityused to partition the training
data. As claimed in [3], small values rof relative to the total number of features,
are often sufficient for the forest to approachdtstimal performance. In fact,
large values ofm, though they may increase the strength of theviddal trees,
induce higher correlation among them, potentiadigiucing the overall effective-
ness of the forest. The quantityis generally referred to as thait dimension.

Each tree is grown without pruning until the datdétsleaf nodes are homoge-
neous, or until some other predefined stoppinggan is satisfied. Class predic-
tions are then performed by propagating a test kEathpough each tree and as-
signing a class label, aote, based upon the leaf node that receives the sample
Typically, the sample is assigned to the classivewethe majority vote. Note,
however, that the resulting votes can be viewedmsoximately i.i.d. random
variables, and thus, the Laws of Large Numbers yntpat their empirical fre-
guency will approach their true frequency as theloer of trees increases. More-
over, the empirical distribution function from whithey are drawn will converge
to the true underlying distribution function [14lItimately, we can treat the re-
sulting vote frequencies as class-specific proft@sland threshold upon this dis-

tribution to make a classification decision.

3 Discriminant Random For ests

The following section describes the Discriminanh&am Forest methodology in
greater detail. As an ensemble classification oektthat utilizes bagging and
randomized feature selection, the DRF shares time $heoretical foundation that
affords the RF its remarkable effectiveness. Hawgthe key distinction between
these techniques lies in the prescribed methodgbtting tree nodes. The DRF
leverages the parametric multivariate discriminatiechnique called Linear Dis-

criminant Analysis.



3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), pioneered byAR Fisher in 1936, is a dis-
crimination technique that utilizes dimensionaligduction to classify items into
distinct groups [8, 11, 16]. The LDA is an intuigly appealing methodology that
makes class assignments by determining the limaasformation of the data in
feature space that maximizes the ratio of theiwbenh-class variance to their
within-class variance, achieving the greatest ckagmration, as illustrated in Fig.
1. The result is a linear decision boundary, idahto that determined by maxi-
mum likelihood discrimination, which is optimal (&n Bayesian sense) when the
underlying assumptions of multivariate normalitydaggual covariance matrices
are satisfied [15]. It can be shown that, in the-tlass case, the maximum class
separation occurs when the vector of coefficientsand intercepth, used to de-

fine the linear transformation are as follows

W=7~ 1) s 3)
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0
where % is the common covariance matriy, is the mean vector for claksand

7, is the prior probability of th&" class. Typically, when data are limited, we es-

timate £ with the pooled covariance estimag,, given by

Sy =25, ©)
k=1
s, :2@“ %) %) (6)

In the above equations,, andx, denote thé" training sample of clagsand the

corresponding class sample mean, respectively.



Fig. 1. LDA transformation and the optimal lineacision boundary.

3.2 The Discriminant Random Forest Methodology

Numerous variations of the Random Forest methogotaye been proposed and
documented in the literature, most of which addresse-splitting techniques [4,
6]. Many of these are based upon an assessmantefmpurity (i.e., heteroge-
neity) and include entropy-based methods, minirfopabf the Gini impurity in-
dex, or minimization of misclassification error8dditional forest-based methods
that focus upon alternative aspects of the algarithclude supplementing small
feature spaces with linear combinations of avadlaiglatures [3], variations on
early stopping criteria, selecting the split atdam from then best splits [6], and
PCA transformation of random feature subsets [17].

Our Discriminant Random Forest is a novel apprdacthe construction of a
classification tree ensemble in which LDA is em@dyto split the feature data.
Bagging and random feature selection are presdnvéhis approach, but unlike
other forest algorithms, we apply LDA to the dataeach node to determine an
“optimal” linear decision boundary. By doing soe allow decision hyperplanes
of any orientation in multidimensional feature spac separate the data, in con-
trast to the conventional random forest algoritkwrhpse boundaries are limited to

hyperplanes orthogonal to the axis correspondintpéofeature yielding the best



split. We have illustrated this effect in Fig.vihich depicts decision lines in two-
dimensional space for the RF (left) and the DRghf).

These two approaches to node splitting give risbigbly distinctive decision
regions. Fig. 3 shows an example of a two-dimeraidacision region created by
each forest, in which bright blue and bright goidas represent regions of high
posterior probability for the positive and negatilasses, respectively. Darker
areas indicate regions of greater uncertainty. ddwsion region produced by the
DRF is notably more complex, and its boundariesflaid and highly intricate,

fitting more closely to the training data.
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Fig. 3. Posterior probability (blue/gold represth# positive/negative classes) for the RF and DRE;

training set is overlaid, where white/maroon repneéshe positive/negative samples.



Trai n_DRF (Data, m, NumTrees ):
for (i=0;i< NumTrees; i++)
D = bootstrap sample of size N from
Train DRF Tree (D, m
end for
end Trai n_DRF

Dat a

Trai n_DRF_Tree(D, m:

level =0
cr eat e root node at level with data D
whi | e not (all nodes at level are terminal)
for (non-terminal node j at level )
Fi = sanpl e mfeatures w/o replacement

D’ = project D onto F
conpute w and bjusing D’; storein
D, Dg= split D such that

Dk = x; otherwise

i f (D, is homogeneous)
assign class( D)to left child
end if
creat e right_child at level +1 with
i f (Dgis homogeneous)
assign class( Dg)to right_child
end if
end for
end while
i ncrement level
end Trai n_DRF Tree

j

DL = x; if w'x'+b>0, Ox;00, x' O

create left _child at level +1with D_

Dr

Fig. 4. Pseudocode for the Discriminant Randonestaalgorithm.

Pseudocode for training a DRF on a data set ofi$igeprovided in Fig. 4. As
previously discussed, the growth of the forest peals in a manner similar to the
conventional Random Forest, with the notable exocrpif the decision boundary
computation, which proceeds as described in Se@ibn Note that the termina-
tion criterion for the leaf nodes in the given aitfam relies upon homogeneity of

the node data. An alternative to this approach lvélpresented and discussed in

Section 4.4.




4 DRF and RF: An Empirical Study

In the following suite of experiments, we compdre tlassification performance
of the RF (utilizing the misclassification minimizan node-splitting criterion)
and DRF for two signal detection applications: {&tecting hidden signals of
varying strength in the presence of backgrounden@ad (2) detecting sources of
radiation. Both tasks represent two-class problesns! like many other real-
world applications, the costs for distinct typeseasfor are inherently unequal.
Thus, we evaluate the performance of the RF and BB#hodologies in terms of
false positives, also known as false alarms or type | errors, fahsk negatives,
also known as misses or type Il errors. The falaem rate FAR), false negative
rate £NR), and true positive ratdPR or detection rate) are defined as follows:
FAR = #negative samples misclassified
#negative samples

ENR = # positive samples misclassif ied
# positive samples

(7)

TPR =1-FNR

4.1 Hidden Signal Detection

The goal in theHidden Sgnal Detection application is to detect the presence of an
embedded signal. In this application, it is assiniat each detection event re-
quires a considerable amount of costly analysikimgafalse alarms highly unde-
sirable. Hence, we have computed #nea Under the Receiver Operating Char-
acteristic (ROC) Curve, or AUC, integrated over thEAR interval [0, 0.001] and
scaled so that a value of 100% represents a petédettion rate over this low
FAR interval. The resulting quantity provides us wétlsingle value that can be
used to compare the prediction performance of ldwsifiers.

The data for these experiments are composed ofé&parate sets. The training
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data set,T1, consists of 7931 negative class samples (i.eembedded signal)

along with two sets of positive class samples avi% and 100% embedded
signal strength (7598 and 7869 samples, respegtivEhe J2 data set contains

9978 negative class samples and five positive etabsving signal strengths of
20%, 40%, 60%, 80% and 100% (7760, 9143, 9327, 98879425 samples, re-
spectively). The training and testing data setsefach of the following experi-

ments consist of the negative class combined with af the available positive

classes, as indicated in each case. All data ssnepinsist of eight features useful
for detecting the presence of embedded signals.h&Ve applied both the RF and
DRF forest methodologies at each split dimengierni{1,2,...,8}) in an effort to

assess the impact of this parameter on their padoce.

4.1.1 Trainingon T1, Testing on J2

Fig. 5 shows the plots of tdJC generated by training the forestsThand test-
ing onJ2 at signal strengths of 40% and 100%. Each RFRF Was composed
of 500 trees, a sufficient forest size to ensumevecgence ilAUC. In 14 of the 16
possible combinations of signal strength and shiitension, the DRF perform-
ance clearly exceeded that of the RF overRAR region of interest. In the re-
maining two cases, the difference in the deteatade was negligible. Moreover,
these results suggest that the DRF is more suctésah the RF algorithm in de-
tecting weaker signals and better utilizes moreautiripatures. As the split dimen-
sion increases, we would expect the trees to beaow® correlated for both
methodologies, resulting in poorer prediction parfance. Fig. 5 suggests this
trend, but the effect appears to be noticeablydessre for the DRF. The tradeoff
between tree strength and correlation with resfment is discussed in greater de-
tail in Section4.2. ROC curves for both RF and DRF for the Hid&&gnal De-
tection application are plotted in Fig. 6, agaidioating that the DRF exhibits su-

perior performance across the I64R region of interest.
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Fig. 5. AUC for RF and DRF: (top) trained did, tested onJ2 with 40% signal strength; (bottom)

trained onT1, tested o2 with 100% signal strength. Each classifier is posed of 500 trees.
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Fig. 6. ROC curves for RiF=1 and DRHAT=2 trained orr'l, tested o2 with 100% signal strength
and 170K additional negative samples.
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4.1.2 Prediction Performance for J2 with Cross Validation

To more thoroughly explore the impact of signaésgth on prediction perform-
ance, we trained and tested the RF and DRF origalhlsstrengths of thd2 data
set. We used 5-fold cross-validation (CV) to easduthe performance of both
classifiers. Ink-fold cross-validation, the data set is randomiytipaned intok
equal-sized and equally-proportioned subsets. éach runi, we set aside data
subset for testing, and we train the classifier on thmaeingk-1 subsets. We
use the average of thels@stimates to compute our performance estimate. 7F
shows the percentage increase in AREC achieved by the DRF for split dimen-
sionalitiesm 0 {1,2} as compared to the best-performing RF (ie=1). As we
observed when training ofil, the DRF yields substantially better detection- per

formance on weaker signals.
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Fig. 7. Percentage increase in AUC on J2 for DRE 1, 2 over RAn = 1 at each signal strength.
Each forest is composed of 500 trees.

4.2 Radiation Detection

The objective of the Radiation Detection effortddetect the presence of a radia-

tion source in vehicles traveling through a radagportal monitoring system that
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measures the gamma ray spectrum of each vehicldiged into 128 energy bins.
The 128-dimensional normalized gamma ray spectree s&s the input features for
the RF and DRF classifiers. The negative clasomposed of radiation meas-
urements from real vehicles containing no radiasiource.

The data for the positive class were created tpctifjg a separate set of nega-
tive samples with spectra derived from two isotopienpositions of both Ura-
nium and Plutonium in IAEA Category 1 quantitie8][1These sets of positive
and negative samples were then partitioned into-awamlapping, equally-
proportioned training and testing sets containi@g®@0 and 75,000 samples, re-
spectively.

The ROC curves in Fig. 8 show thER (i.e., detection rate) versus tRAR for
RF and DRF. Over most of the IdwAR range, the DRF maintains higher detec-

tion rates than the RF.
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Fig. 8. ROC curves in the Radiation Detection taskRF and DRF.

The large number of features available for thisliappon presents an ideal op-
portunity to thoroughly explore the behavior of tRE and DRF methodologies
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for high split dimensions. In particular, we wighinvestigate their relative com-
putational efficiency, memory considerations, baind their generalization error
(Eqg. 1), the interplay between tree strength amdetation, and the impact of each
of these characteristics on overall algorithm panfance. We have utilized the
OOB data to compute these characteristics (sedof3further details) at the
minimal forest size required for each algorithmathieve its peak performance.
This can be readily observed in Fig. 9, which shavmot of the minimum classi-
fication error MCE) achieved by both classifiers with respect to
mO{2" [n=0,1,...,7}. TheMCE is plotted as a function of the forest size and
indicates that the peak DRF performance was actlibyea forest consisting of
approximately 50 trees, far fewer than the 250strequired by the RF.

In Table 1, performance statistics have been pealidr the RF yielding the
bestMCE and for a DRF whose performance exceeded théiedRE with respect
to error, computational requirements and efficiéndyoth were trained on a dual-
core Intel 6600 2.4 GHz processor with 4GB of RANlo compute memory us-
age, we assumed that each RF node must storeegeiirfeature 1D and its corre-
sponding floating-point threshold. Each DRF nodgstrstorem integers for its

selected feature IDs along witht+1 floating point values for its weight vectar,

TABLE 1. PERFORMANCESUMMARY FOR RF/DRF.

RF DRF Rel. Diff.
Dimension 4 8 e
Forest Size 250 50 80%

Avg.Nodes/Tree 1757.69 718.16  59.1%
Classification Error  4.37e-3 2.05e-3  53.0%
Training Time (s) 315 48 84.8%

Memory Usage (b) 439423 323172 26.5%

L With respect taMCE alone, the best DRF achieved a 79.5% reductia@tivelto
the RF.
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Fig. 9. Minimum classification error (MCE) for th&~ and DRF as a function of forest size on the Ra-

diation Detection dataset.

Table 1 indicates that the DRF was able to achéelmver classification error
rate than the RF while simultaneously reducingntregj time and memory usage
by 84.8% and 26.5%, respectively. The smaller DREs clearly contribute to
this improvement in efficiency, but their reducézkesalso suggests a dramatic in-
crease in tree strength.

From an empirical standpoint, a node splittingtetyg that effects a better sepa-
ration of the data, such as the multivariate LDA&htdque, naturally generates
smaller classification trees as the split dimeraiiby increases, as shown in Fig.
10. Though such trees might exhibit superior potéath capabilities (i.e., greater
strength), we would generally expect the variaBmmong them to decrease (i.e.,
increased correlation), potentially leading to duction in overall performance.

The key to informative analysis of these two cléissiion methodologies, as
introduced in Section 2, lies in our ability to sassfully characterize this inter-
play between the strength and correlation of irdlial trees. To provide further
insight into these behaviors, Fig. 11 comparesQf8 estimates of tree strength

and correlation for the RF and DRF, along with ithetassification error and re-
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spective generalization error bounds plotted asatfon of the split dimensional-
ity, m. As expected, the strength of an individual DR¥etis, in general, signifi-
cantly greater than that of its RF counterpartr rRare remarkable is the reduced
correlation among the DRF trees for split dimensiap tom=9C. The relation-
ship between strength and correlation is typicalgarded as a tradeoff [3], in
which one is improved at the expense of the othed the smaller DRF trees
might naively be expected to exhibit greater catieh. However, [3] suggests
that each base classifier is primarily influencgdte parameter vector represent-
ing the series of random feature selections at eade. In the multivariate set-
ting, the number of potential feature subsets ah e@de increases combinatori-
ally, dramatically enhancing the variability in thparameter vector that
characterizes the classifier, which may explainithmediate drop in correlation
asm increases. Asn approaches the cardinality of the feature set,dvew we
observe a sudden and severe rise in correlatidravier that is consistent with the

reduced variation in the nodal features used fhitigg.
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Fig. 10. Average decision tree size for the RFRRAF as a function of the dimensionality,
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Consistent with the generalization error bound (E). Fig. 11 shows that
strength has a greater impact on the classifilopaance than the correlation.
Even at the highest split dimensionality, the DR&ssification error and error
bound exhibit only minimal degradation. In contrabe RF error steadily in-
creases with the split dimensionality. Moreovee DRF bound is far tighter than
that of the RF, even surpassing the RF classifinairor atm = 2&.

Interestingly, though the strength and correlatbboth methodologies exhibit
similar trends, their classification errors exhityiposing behavior, suggesting that
the relationship between strength and correlat®omore complex than can be

fully explained by our initial experiments.
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4.3 Significance of Empirical Results

For the two signal detection applications discusseave, the performance of the
DRF and RF methodologies was compared and condrasiea series of experi-
ments. The empirical evidence presented indicdtatthe DRF outperformed the
RF with respect to each of the identified measwfeperformance. However, a
natural question arisesire these observed differences statistically significant or
simply an artifact of random fluctuations originating from the stochastic nature of
the algorithms (e.g., bootstrap sampling of data and features)? To more thor-
oughly investigate this issue, we revisited thedeéiu Signal Detection application
introduced in Section 4.1. Specifically, using tnginal T1 training data set and a
new testing set calledl, we wish to build statistical confidence regionsrgund-
ing “average” DRF and RF ROC curves. The resultamfidence regions could
then be used to determine whether the observedredif€es in performance are
significant.

The J1 data set is statistically equivalent to the o@didata set)2. It contains
179,527 negative class samples and 9,426 positgs samples with 100% em-
bedded signal strength. As in the prior Hidden Sighetection experiments, all
data samples consist of eight features useful éealing the presence of embed-
ded signals.

The J1 data set, though equivalentd®, was not utilized in any fashion during
the development of the DRF algorithm; consequeittig, an ideal testing data set
for independently assessing the performance ofrtsigodology. This is common
practice in the speech recognition field and theatder machine learning commu-
nity and is employed to prevent the subtle tunifig mmethodology to a particular
set of testing data.

For this study, we applied both the RF and DRF odtlogies at all split di-
mensionsm ={1,2,3,....8} and observed that the optimal RF occurredrat 2,
while the performance of the DRF peaked for=1. We will focus on these cases

for the remainder of this discussion.
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For each algorithm, 101 classifiers were trained t@sted using variable ran-
dom seeds. Based upon the resulting ROC curvemedian” ROC and corre-
sponding upper and lower confidence limits were gotad for each methodology
using a variant of the vertical averaging approde$cribed by Fawcett [10]. Spe-
cifically, for each FAR valuar [1[0.0,1.0], the 101 corresponding detection rates
were ranked, and their median detection fst®R(a) was computed along with
their 97.5 and 2.5 percentiles. Using this date,rttedian ROC, consisting of the
collection of points{(a, MDR(a) :  0[001.01]} , and the 97.5 and 2.5 percentile

bands were computed and are shown in Fig. 12.

It is immediately apparent that the median ROC asabciated percentile bands
for the DRF and RF do not overlap for FAR valuesslthan 18, providing con-
siderable evidence that the observed performanpeoirament exhibited by the
DRF over this region is statistically significant.

We can also examine these results from the perspeat the AUC. Specifi-
cally, we computed the AUC values for the 101 dfasdion results of each
methodology using FAR cutoff levels of 010* and 1C. Box plots of these re-
sults, with the medians and the™&nd 78" quantiles indicated, were computed
and are shown in Fig. 13. Note that in each cé&seinterquartile ranges are non-
overlapping, further reinforcing our belief thaetperformance gain of the DRF

over the RF is statistically significant in the lemFAR region of interest.
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Fig. 12. The median ROC, 97.5 and 2.5 percentileges for the DRF (redn = 1) and RF (blackn =
2) classifiers using the Hidden Signal data sEtsafdJ1).
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the Hidden Signal data sefEL(andJ1).
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4.4 Small Samples and Early Stopping

Both the RF and DRF are tree-based ensemble itadiih methodologies whose
construction relies fundamentally upon the procesdebagging and random fea-
ture selection. In fact, the DRF shares many aititiés with the RF and, conse-
quently, shares many of its most noteworthy adwgesa However, a critical ex-
ception is the parametric node-splitting processizett by the DRF. The
conventional RF approach to node splitting is aqaished via a univariate
threshholding process that is optimized relativesdémne predetermined criterion
(e.g., Gini impurity). Generally, parameters ar¢ estimated during this process.
In contrast, node splitting under the DRF regimpdagormed by building an LDA
model at each node in an effort to determine arnitfogd” linear decision bound-
ary. For the two-class problem, this requires thnetion of the class specific
mean vectorsy,, k=0,1 and common covariance matr at each node in the
forest.

This is an important distinction between the twahmoes that manifests itself in
several ways. In particular, the training of thevéo portions of all DRF trees
(near the leaf nodes) must contend with progrelsisjgarser data sets. Specifi-
cally, the LDA models are based upon point estiséeg., maximum likelihood
estimates) of the mean vectors and common covariaratrix. For a split dimen-
sion of m=1, there are exactlyp =3m+ m(m—l)/ 2 parameters to estimate at
each node. Hence, as the valuenofincreases, the estimation problem becomes
increasingly challenging at the more sparsely patedl nodes in the forest. In se-
vere cases, the common covariance matrix is nat esémable. This occurs ex-
actly when a node is impure (i.e., both classesrapeesented) and the feature
vectors within each class are identical. In thesges, the DRF splitting process
defaults to a geometric method (i.e., the deciimashold is taken to be the per-
pendicular bisector of the chord connecting thepammeans of the two classes).
This tactic has proven relatively effective in gieg, but the more subtle issue of
small sample size parameter estimation remains.

Unfortunately, this is a common problem in statistiand our study of the DRF
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methodology would be incomplete without investiggtithe role parameter esti-
mation plays in its performance and reliability.careful examination of the me-
dian ROC and the corresponding 97.5 and 2.5 peélediands shown in Fig. 12
reveals behavior that may provide insight into thgie. Note that the distance be-
tween the percentile bands increases noticeablhesAR drops from I0to
5*10°°, suggesting a considerable increase in the viitiabif the experimental
ROC curves over this extreme intervHlis our conjecture that a contributing fac-
tor to this phenomenon is the sparseness of tlzeiddhe lower nodes of the DRF
trees, which leads to greater instability in theapaeter estimates.

This behavior is even more pronounced for the Rpgaring at first glance to
contradict the above conjecture. Though its undeglgause is not entirely clear,
this contradictory behavior may be at least paytexkplained by the fact that each
DRF node splitting decision utilizes two sourcesndérmation: the node data and
the LDA model. The model may exert a dampeningiarice on the impact of the
data, reducing variability at the leaf nodes andstheducing variability in the
ROC at low FAR values. In contrast, the RF is dmnientirely by the data and
hence may prove more vulnerable to data variatimhsparseness.

In any case, enriching the data at the lower DRéfenan an effort to improve
parameter estimation and ultimately enhance pedaom (e.g., increase the me-
dian detection rate while reducing variability)ashallenge we would like to ad-
dress. As a first attempt in this direction, we sidared the optimal DRFnf =1)
for the Hidden Signal Detection application problfrst described in Section 4.1.
In this case, the LDA model building exercise regiuto estimating three univari-
ate Gaussian parameters. We have observed in odiestthat the number of
samples used to estimate these parameters nebratheodes is frequently very
small — less than 10 in many cases. To more fulplage this issue, suppose we
require that at leash = 3C samples be used to estimate the LDA parameters at
any node in the forestWhat is the impact of this constraint on the detection per-
formance?

To address this question, we incorporated an esolgping criterion into our

methodology whereby tree nodes continue to suoagssplit until either purity
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is achieved or the number of node samples dromswbelprescribed valua, This
version of the DRF methodology is called “earlymting” DRF and is denoted by
DRF-ES.

For the following experiment, we once again randogénerated a collection
of 101 forests, trained oml and tested odl, for both the DRF and DRF-ES
methodologies. Figure 14 presents the median R@@&swand the corresponding
97.5 and 2.5 percentile bands for the standard &ftFthe DRF-ES witm = 30.
We observed that for FAR values less than appraeilng*10?, the DRF-ES
classifier significantly outperforms the convenabrDRF classifier. Figure 15
shows the corresponding box plots of the AUC valisesFAR cutoff levels of

107, 107, and10™°. Over each of these intervals, the interquartiteges are non-
overlapping, reinforcing the statement that thefqrerance gain of the DRF-ES

over the DRF is significant in this casa € 1).
~
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Fig. 14. The median ROC, 97.5 and 2.5 percentileges for the DRF (red) and DRF-ES (blue) classi-
fiers form= 1 using the Hidden Signal data séts &ndJ1).



24

0.8 B
—_—
-
=

@
L o751 4
]
o«
13
k-
<
o
@ —_
] T
i
S orl E |
£ .
3
e
w J—
E - *
s { =
2 !
c
8 o651 . -
H i a

| i
Q H |
Q i
=]
) E|

06 T B
: —— DRF
i —— DRF-ES
I L L L L L
1e5 15 1ed o4 1e3 1e3
Ending False Alarm Rates for AUC Computations
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the Hidden Signal data sefEL(andJ1).
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Fig. 16. Median ROC curves with 97.5 and 2.5 patiteebands for DRF (left) and DRF-ES (right) for

the Hidden Signal Detection problemnat 1, 2, 3 T1 andJ1).

We then extended these studies and compared tfegrpance of the DRF and

DRF-ES classifiers for higher split dimensionsrof=2 anc 3. Figure 16 shows

the median ROC curves with percentile bands foltR& and DRF-ES applied to
the Hidden Signal Detection data sets. Note thabih cases the performance de-

grades agn increases, but the DRF-ES curves exhibit a “ngstaehavior (i.e.,
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they have similar shape) that suggests greateonpesihce stability relative to the
DRF. Specifically, we see that the DRF-ES produtasower percentile bands
that are non-overlapping, while those of the DR& w&ider and repeatedly cross.
In Fig. 17, the DRF and DRF-ES median ROC curvespdotted head-to-head,
together with their 97.5 and 2.5 percentile bafidisgeach value ofm. Note that
the performance advantage enjoyed by the DRF-Efadeg aamn increases from
1to 2, evaporating entirely whem equals 3. In other words, as the number of pa-
rameters increases while holding the maximal sarsjge n = 30 constant, the
DRF-ES performance gains are eroded. This beh@&/monsistent with our earlier
conjecture that parameter estimation based uporsesmhata, combined with in-
creasing model dimensionality, adversely affecéspbrformance and stability of
the DRF methodology. However, it remains likelattthe true mechanisms un-
derlying these behaviors are quite complex and defiple explanation. Issues

such as model choice, misspecification, etc., nldyeacontributing factors.

4.5 Expected Cost

As we discussed in Section 1, information analgg&ems are constructed for the
purpose of compiling large stores of (potentiallyltirsource) data to support in-
formed analysis and decision-making. Though maggrahms in the classifica-
tion field are designed to minimize the expectedrall error in class predictions,
it is common for real-world detection problems ® inherently associated with
unequal costs for false alarms and miss detec{eugs, the Hidden Signal Detec-
tion application). Thus, a natural performance iodtrat quantifies the expected

cost of an incorrect decision in such cost-seresiipplications is given by:

EC = p(+) {1 - DR) [&(miss) + p(-) (FAR [&( falsealarm) (8)

whereDR is the detection ratg(-) is the prior probability for each class, aifd

is the cost for each type of error. To enablealigation of the general behavior
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of this metric, Drummond and Holte developed “costves” that express ex-
pected cost as a function of the class priors astsd7]. Specifically, cost curves
plot the expected cost (normalized by its maximuatu®) versus the probability
cost function PCF), which is given by

F= p(+) [c(miss) ©)
p(+) [@(miss) + p(-) [&( falsealarm)

Assuming equal prior&CF is small when the cost of false alarms is lardg-re
tive to that of missed detections. In the Hiddegn&l Detection application, the
cost of a false alarm is considered to be at |@a6t times more costly than a
missed detection, making classifiers whose costesuare lower at small values
of PCF (e.g.,PCF < 0.01) more desirable. In Fig. 18, we have ptbthe median,
2.5 percentile, and 97.5 percentile cost curvestferRF, DRF, and DRF-ES. We
immediately observe that the DRF and DRF-ES appeée significantly more
effective than the RF, with DRF-ES achieving thealest expected cost across

the low PCF range of interest.

3
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Fig. 19. Cost curves plotted for RF (black), DR&dj and DRF-ES (blue) over the PCF range of in-
terest. The discriminant-based classifiers ougperfthe RF over this range, with the DRF-ES achiev-
ing the lowest cost over all.
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5 Conclusions

The empirical results presented in Section 4 pmwtiong evidence that the Dis-
criminant Random Forest and its ES variant prodigeificantly higher detection
rates than the Random Forest over the low FAR regad interest. The superior
strength and diversity of the trees produced byDXR& further support this obser-
vation. In addition, this methodology appears ¢onfiore successful in the detec-
tion of weak signals and may be especially usejfulapplications in which low
signal-to-noise ratios are typically encountered.

We have also found that our methodology achievesofaer prediction errors
than the RF when high-dimensional feature vectoesuaed at each tree node. In
general, we expect the performance of any foredetdine as the number of fea-
tures selected at each node approaches the caégdiofithe entire feature set.
Under these conditions, the individual base classifthat compose the forest are
nearly identical, negating many of the benefitd #iégse from an ensemble-based
approach. In such cases, the only variation reimgim the forest is due to the
bagging of the input data. Though we observecettpected performance degra-
dation for both forest methodologies at extremégjhtsplit dimensions, the effect
was far less severe for the discriminant-basedagmbr. This result suggests a
versatility and robustness in the DRF methodoldpt tmay prove valuable for
some application domains.

Our investigation into the effect of sparse datzeated that an early stopping
strategy might help mitigate its impact on classifion performance, ultimately
increasing the detection rate over the lower FA§ams. This advantage, how-
ever, is diminished as split dimensionality incesas Though we did not thor-
oughly explore the sensitivity of the DRF performarto the early stopping pa-
rametern, we conjecture that increasing this parameteegponse to increases in
split dimensionality would be counterproductiveucB a strategy would eventu-
ally eliminate the fine-grained (i.e., small sgattass distinctions that are critical
for effective classification. However, at splinténsionm = 1, the DRF enjoys a

significant performance improvement in low FAR @t8 via early stopping. In
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fact, for our applications, the DRF-ES at= 1 outperformed the DRF over all
dimensions.

Overall, our empirical studies provided considegadidence that the DRF is
significantly more effective than the RF over lowR regions. Although compu-
tational efficiency may be adversely impacted by itiore complex node-splitting
of the DRF at extremely high dimensions, its pea&kfgrmance is typically
achieved at much lower dimensions where it is neffieient than the RF with re-
spect to memory and runtime.

The behavior of the Discriminant Random Forest madhogy is compelling
and hints at complex internal mechanisms that énfiitther investigation. How-
ever, we have found statistically significant evide supporting this technique as
a highly robust and successful classification appihoacross diverse application

domains.
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